Calculus II	Activity 0405
Dr. Paul L. Bailey	Monday, April 5, 2021

Name:

In the sequence 1, 2, 3, ..., the next term is 4, and the n^{th} term is n. In the sequence 2, 4, 6, ..., the next term is 8, and the n^{th} term is 2n. In the sequence 3, 5, 7, ..., the next term is 9, and the n^{th} term is 2n + 1.

Problem 1. In each sequence below, write the next term and the n^{th} term.

	Sequence	Next Term	7 th Term	n th Term
(a)	1, 4, 9, 16,			
(b)	2, 5, 10, 17,			
(c)	1, -1, 1, -1,			
(d)	$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$			
(e)	$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots$			
(f)	$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$			
(g)	$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{16}, \dots$			
(h)	$1, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots$			
(i)	1, 1, 2, 3, 5, 8, 13,			
(j)	2, 3, 5, 7, 11, 13,			

If we have a sequence, the first term is often written a_1 , the second is a_2 , the seventh is a_7 , and the n^{th} is a_n . If we have two or three sequences, we write their terms in the form a_n , b_n , and c_n , and so forth.

Problem 2. What is a_7 , if $a_n = 3n - 4$?

Problem 3. What is b_7 , if $a_n = 3n - 4$ and $b_n = a_n^2 + 3$?

Problem 4. What is c_7 , if $c_0 = 1$ and $c_n = 3c_{n-1}$?

Problem 5. What is s_7 , if $s_0 = 0$ and $s_n = s_{n-1} + n$

Problem 6. What is s_n , if $s_0 = 0$ and $s_n = s_{n-1} + n$?

Problem 7. What would be the best mathematical definition of "a sequence of real numbers"?